This blog is NOFOLLOW Free!
Print This Post Print This Post : Print This Post Print This Post

  A Visit to our Motorhome


Today I paid a visit to our motorhome where it is parked at the wrecker service.  I had no idea the damage was so severe.  Following are some photos of the damage.  The interior shots show just how shoddily stick-built RVs are constructed.

Amazing what damage a small, probably less than 1800 lb car can do when it impacts at high speed.


Front End Damage.


front end damage from another angle


Looking inside the rig through the side door.

Dinette Damage

Where the dinette used to be


More left side damage


detail showing the shoddy construction methods used


A view from front to back


more damage from where the dinette was supposed to be


What was visible when I opened the side door

right rear corner

Right rear corner damage

storage compartment

showing the damage to the rear storage compartment and right rear corner

Posted by neonjohn on July 14th, 2017 under RV/Camping |
  Comment now »

Print This Post Print This Post : Print This Post Print This Post

  That was fast


I meant for this post to signify my return to blogging.  Last April 7 I got married to the most wonderful lady alive, someone I met on  We decided to buy a motor home and start traveling a bit.  During the first week of June I found the almost perfect rig.

Our new Motorhome

Our new Motorhome

Right side

Right Side


I found it in Atlanta on Craig’s List.  A rush trip down to inspect the rig ensued.  It was almost perfect even though it was a ’95 model.  The price was right so I bought it on the spot.

The front tires were dry-rotted but I hoped that I could get it home if I drove slowly.  No such luck.  At the rest area on I-75 north of Atlanta, a tread separated.  Several hours and about $500 later I had new tires on both front wheels.  We spent the night in the rest area and drove home uneventfully the next day.

Since then I’ve spent a few thousand bux bringing it up to modern standards.  $1000 for new tires.  About $300 for a modern 4 stage battery charger and converter.  A few hundred for LED lighting.  Etc.

Monday July 3rd

We had a doctor’s appointment in Cleveland so we decided to take the rig to Cleveland, see the doc, stock up on food and then head off somewhere for a few days.

We headed out of Tellico on a winding country road known as Mecca Pike.  We were following a huge, dual steer axle mobile crane.  At least 50 ton capacity and probably more.  He was mortally flying, taking left hand turns on the inside and scraping the shoulders on others.  We’d catch him on steep hills but he’d jet away until the next hill.

We were in an uphil left hand turn and he was exiting the turn in the left lane.  Suddenly a little red car lept sideways into our lane, fishtailing wildly.    She finally lost it and  slid sideways into us.  BAM – a Head On Collision.

Praise the Lord for good seatbelts and no air bombs.  The impact knocked us sideways and pointed us down an embankment. After the first impact, I still had my hands on the wheel.  Old racing experience kicked in and I steered with the slide while the rig went down an estimated 10 ft embankment.  It slammed hard into ground at the bottom but it stayed upright.

I was not injured at all, except for some tightness in my lower back.  Deb, whose side bore the brunt of the impact, was smacked pretty hard by the shoulder belt.  She now has a nice bruise across her chest and possibly a broken rib.


Our little rig where it came to rest

The little red car didn’t fare so well.

red car

little red car with air bombs exploded.

As you can see, air bombs came out from all over.  The driver was quite beaten up by the air bombs.  This graphically shows why I’ll never own a car with an air bomb.

The woman looked and acted like an alleged meth-head.  The Tennessee Highway Patrol whisked her off to the hospital for a blood test.  We don’t yet have the police report so I don’t know the results but the THP trooper told me she was being charged for the accident.  We feel strongly that the crane driver should be charged.

In an act of closing the barn door after all the horses are gone, I ordered a dash cam last night from Amazon.  I’d already been thinking about one.  Shame on me for not acting sooner.

So now starts the fight with the insurance companies.  Not what I’d hoped to be doing right now.

Our poor little RV is now sitting in the wrecker’s storage yard waiting on the insurance adjusters and on us to go get our personal stuff.  If it’ll quit raining for a day…



Posted by neonjohn on July 6th, 2017 under RV/Camping, Tellico |
  Comment now »

Print This Post Print This Post : Print This Post Print This Post

  A Sadly Glorious Day


Today is a very happy but sad day for me.  Joyous because today is the day we true Southerners celebrate Robert E. Lee’s birthday.  Sad because this year this is the day my Father died in 2004.  Two great military men and two men of unquestioned integrity.

Robert E Lee

Robert E. Lee

Of course the history of Robert E. Lee is widely known.  A great yankee general who chose to side with his beloved state of Virginia rather than support the War of Northern Aggression.   Despite few supplies and double-crossing foreign “allies”, he almost single handedly led the South to victory.  Almost.  One can only imagine what the world would be like had the South won.  We certainly would not have the massive, invasive, all-encompassing government we have today which meddles in every aspect of our lives.

Dad in Tellico

Dad fishing in Tellico Plains, TN in 1948

Less well known is my father’s history.  Desiring a military career from a very early age, he sneaked into the Army at 15 and went on to distinguish himself by making the rank of Major in 7 years.

On D-Day he hit the beach at Utah.  Surviving the landing, he fought with his 30th Infantry Division known as “Old Hickory”.

Camp Blanding 2004

Dad at Camp Blanding, in 2004.

He fought his way to the battle of St Lo where, during an heroic mission behind enemy lines, he was grievously wounded by a german artillery shell.  He laid between the French hedgerows for 2 days before being rescued and spend 3 more days on the beach before being evacuated to a hospital ship.

By the time he arrived at the ship, gangrene had set in and he was triaged to die.  And he would have, had a certain nurse not thought he was too cute to die and slipped him the then-invaluable penicillin.

Multiple surgeries and 2.5 years in a body cast later, he had nothing but scar tissue for a hip and one leg 3″ shorter than the other.

He was nominated for the Metal of Honor but his nomination was lost when a company HQ was destroyed by german bombing.  As it was, he earned a silver star for Galantry.

About 2000, I started to try to get him his Medal, putting together evidence from still-living comrades.  But he made me stop, telling me that this country had already rewarded him enough.

Of course, the greatest things he did was to father my brother, Dr Eben DeArmond, Jr and myself!  Those were certainly his proudest achievements.

So on this special day, here a tip of the hat to both of you.  Dad, I hope you and Robert are having fun telling war stories and have found the peace you both deserve.

Your loving son,



Posted by neonjohn on January 18th, 2016 under Cool Stuff, Current Events, Personal |

Print This Post Print This Post : Print This Post Print This Post

  Using the Induction Heater – Aluminum Melting Part 2


The Kitchen Foundry

In part one I documented the construction of the Kentucky Fried Foundry, designed to melt small batches of aluminum using our Fluxeon® Roy induction heater.  In this instalment I document the furnace’s use.

Overall View

Overall View of the kitchen foundry.

This shows the overall setup of the Kitchen Foundry.  From left to right

Notice that the furnace is sitting on a lightweight fire brick (LFB) supported with some kiln furniture.  Notice that the kiln furniture provides plenty of air space between the LFB and the range top.  That is very important, as I’ll show you later.

cheater cord

Fully Code compliant 240 to120 cheater cord

The Roy 2500 will operated from either 120 or 240 volts.  This prototype has a 120 volt cord on it so I constructed a fully code compliant :-) 240 to 120 adaptor so that the Roy could be powered by 240 volts for this run.

data logger

Hobo 4 channel data Logger

The Onset Hobo data logger.  This nifty and inexpensive logger has enough memory to take a sample every second for several days.

Something interesting to note here.  All 4 thermocouples are at the same temperature and yet there’s almost a 6 deg disparity between readings.  And note that the last plug is barely engaged.  That’s because it is so out of tolerance that it would have broken the socket had I forced it in.  The first thermocouple is a high quality high accuracy thermocouple from .  The second one is made of thermocouple wire but has been abused by high temperature use.  The third and forth ones are cheap ChiCom units from sleazebay.  Note the blue spiral around the wire.  The spiral designates thermocouple extension cable.  This is a cheaper, low tolerance wire that is designed to carry the signal from the actual thermocouple to the readout device.  Here they’ve used it to try to make actual thermocouples.  Problem is, TC extension cable is typically spec’d at ±10 deg F while a quality TC wire will typically be better than ±1 degree.  I used the cheap chicom ones because I was out of quality ones.  Good enough for this experiment.

Data measurement setup

Data measurement setup

For this run I was also evaluating a new cooling system for the Roy 2500.  So I was measuring the temperature at several strategic places inside the case plus the case pressure generated by the cooling fan.



This is a micromanometer.  It is capable of measuring air pressure to 0.001″ of water.  It is extremely handy for verifying the cooling air paths and pressures inside a sealed enclosure.  Its operation is simple.  In the rear is one AA cell.  This cell is connected in series with the ON/OFF switch and a current limiting resistor.  Then one lead connects to the water solution and the other to the micrometer head.  The micrometer head has a tapered needle on the end.

With no pressure on the manometer, the micrometer is adjusted until some reading is obtained on the meter and noted.  Then pressure is applied and the micrometer is adjusted upward until the meter returns to the same place as before.  The pressure is the difference between the two micrometer readings.

This is a very expensive instrument but when designing compact, high power devices, it is invaluable for measuring pressures and flows at various points within the enclosure.  This photo should allow any enterprising experimenter to make one of his own.

thermal isolators

Thermal isolators to keep heat off the Roy leads

This is an important detail.  The copper wire isolates the heat of the induction coil coming from the furnace from the Roy leads.  Initially we had each one immersed in a container of water but we quickly realized that air cooling was sufficient.

overheated connector

Overheated connector

This is what happens when the connector isn’t tightened well enough.  The heat pretty much destroyed the connector.

charging the furnace

Charging the furnace

Charging the furnace for the first melt.

First melt

First Melt

Here is the first melt melting.  From cold to 5 lbs of metal melted took about 15 minutes.

Unfortunately a crack opened in the Kast-O-Lite.  It wasn’t supposed to do that but it did.  We followed the curing and heat-up schedule to a tee but it still cracked.  The good news is that it did not grow.  In fact, after we put a large worm drive pipe clamp around the furnace, the crack practically closed.  In any event, the crack did not affect the operation of the furnace.

the melt-lights on

The Melt – Lights on.

Here’s the crucible almost full of aluminum.

And here it is with the lights off

lights off

the melt – lights off

So the furnace works but it needs several improvements.

The first improvement is the refractory.  The Kast-O-Lite is heavy and relatively highly thermally conductive and with a large thermal mass. The outside of the furnace reached temperatures in the 500 deg F range.  While I can pick up the furnace to make a pour using heavy welding gloves, I’d much rather the surface remain at near room temperature.  And I’d like it to be much lighter than it is now.

We’re working with our supplier, Larkin Refractory   to come up with a more suitable refractory.  It will probably be one of the foamed refractories.  These are lightweight yet strong, have low thermal conductivity and little thermal mass.  That should cut the melt time by at least a third.


Not much here.  Frankly I’m tired of the safety nannies splattering every thing and every activity with pages of warnings.  If you don’t realize that red hot molten metal can be dangerous and can cause fires then you need to spend some time researching the subject on the web.  I assume my readers have already done that.

Some folks might get their panties in a wad about doing this in the kitchen.  In reality, the kitchen is one of the safest places to melt aluminum.  The stove top is inherently fire-proof.  If the worst were to happen – the crucible rupture and molten metal spill out – the metal would land on the porcelain, then run down through the burner openings to find more metal and fiberglass insulation.  If one lacks a good outdoor place to do this, the stove or maybe the fireplace (if it’s real) are the best places to work.

We do the pouring on the floor.  A sheet of stainless steel is placed on the vinyl and on top of that is a thick bat of FiberFrax.  On top of that rests the mold.

Also not shown in the photographs are a large fire extinguisher and a bucket of water.  The water is there to quench any metal that might escape the Frax and reach the floor.  These precautions are just plain old common sense.

Next I want to illustrate something that is not immediately apparent.  Refractory can store a lot of heat energy within its mass and if it is an insulating refractory, it will take a long time to work its way through the material.  Let me demonstrate an example.

first attempt

First attempt at melting aluminum

This was our very first attempt to melt aluminum with the Roy.  A cut-off propane cylinder, some LFBs and under it all, a hunk of refractory hard board.  This actually worked quite nicely.

after cooling

The crucible after cooling

Here is the crucible a couple of hours later.  I had set a fan to blowing on the assembly so both the crucible and the top of the hard board were at room temperature.

My friend Matt went to bed but out of an abundance of caution, I decided to sit up awhile longer and kill some time on Youtube.  You can see the orange spritzer bottle in the background.  That became very important later.

A couple of hours into my Toobing, I smelled smoke and went into the lab to find my bench on fire.  I used the spritzer bottle full of water to put out the fire and then investigated.  This is what I found under the hardboard.

burnt benchtop

The benchtop several hours later

The heat wave had worked its way out the back side of the refractory and had set the bench on fire.  This happened a full 4 hours after the heat was turned off and the fan applied.

Some air space between the hard board and the bench would have completely prevented this.  As would have taking the crucible and refractory outdoors after we finished our experiments.

Let our experience be your lesson learned.


Posted by neonjohn on November 9th, 2014 under Cool Stuff, Electronics, Induction heating, Projects |